Tuesday, October 20, 2020

Network Programming

We decided to a bit of socket-level network programming as part of the systems programming study group at Recurse Center. The canonical text would appear to be the Unix Network Programming book, but Beej's guide also came highly recommended -- with the added benefit of being quicker to get started and freely available online: 
It turns out that following the correct order of syscalls per Beej's incantations is relatively straightforward... yielding very simple toy servers in short order:
On the other hand, some fundamentals of C programming still elude me, e.g. I couldn't work out how to refactor the creation of sockets into a standalone function due to some (presumably basic) pointer issues...

Monday, October 19, 2020

fp-course

Following the Learn Haskell recommendation, the FP study group at Recurse Center  worked through the fp-course exercises after finishing CIS 194. 

https://github.com/bitemyapp/learnhaskell

The exercises seem to provide good practice, with modules like State and StateT requiring some mental gymnastics training..! 

The repo unfortunately has some incomplete tests files, so I transcribed a few from the comments into HSpec format for Parser.hs and MoreParser.hs: https://github.com/tkuriyama/puzzles/tree/master/fp-course

The test cases were tedious but turned out to be worthwhile, since JsonParser.hs is comprised of more abstract parser combinators. (Interestingly, the parser combinator in CIS 194 is almost identical to fp-course in its building blocks... a coincidence, or a common design pattern?).

Anagrams and Cheque remain to be completed, but we're moving on to writing a toy database in Haskell (with the goal to complete in the last two weeks of the Fall 1 batch!).


Sunday, October 11, 2020

Thursday, September 17, 2020

Game of Risk

The last assignment in the CIS194 Haskell class is to simulate dice-throwing battles in the game of Risk. The combat rules, taken from assignment specs, are:

  • There is an attacking army (containing some number of units) and a defending army (containing some number of units). 
  • The attacking player may attack with up to three units at a time. However, they must always leave at least one unit behind. That is, if they only have three total units in their army they may only attack with two, and so on. 
  • The defending player may defend with up to two units (or only one if that is all they have). 
  • To determine the outcome of a single battle, the attacking and defending players each roll one six-sided die for every unit they have attacking or defending. So the attacking player rolls one, two, or three dice, and the defending player rolls one or two dice. 
  • The attacking player sorts their dice rolls in descending order. The defending player does the same.
  • The dice are then matched up in pairs, starting with the highest roll of each player, then the second-highest.
  • For each pair, if the attacking player’s roll is higher, then one of the defending player’s units die. If there is a tie, or the defending player’s roll is higher, then one of the attacking player’s units die.
We assume it is optimal to always attack or defend with as many units as possible.


Given an initial number of attacking and defending units, what is the expected outcome (say, the probability that the attacker wins)? 

It's not obvious that there is a closed-form expression, but we can find programmatically the exact probabilities. 

First, from the game specs, we know that there are only a few primitive battle patterns (A, D), where A is attacked and D is defender: (1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2). For each pattern, we can generate all possible permutations of die values. Each permutation represent a battle, with an outcome ("loss scenario") in which A and D both lose some number of units (which can be zero units, if they win all dice rolls).  

For example, for (A,D) of (1,1), both the attacker and defender role one die each, yielding 36 pairs of possible die rolls: (1,1), (1,2), (1,3) ... (6,5), (6,6). Tallying up the proportion of outcomes: A loses 1 unit 21 / 36; D loses 1 unit 15 / 36.

(Incidentally, the closed-form expression for 1 vs 1 is relatively simple: for each N that the defender rolls, with 1/6 probability each, the attacker loses in N/6 scenarios. For example, if the defender rolls 4, the attacker loses for all die values <= 4. So we can evaluate the expression (1/6) * (sum [1..6]) / 6, which equals 21/36. See these notes for a more detailed explanation.)

Once we have the loss scenarios with proportions for each primitive battle pattern, finding the exact win probability for the attacker is recursive: for any given starting pattern (A, D), lookup the relevant primitive battle pattern. For each loss scenario in which the attacker does not lose the game, update the battlefield with the losses and recursively lookup the next loss scenario, chaining the proportions (probabilities) until the game ends for each branch. 

The win probabilities for the attacker for patterns up to (10, 10) are:



Using Rational numbers in Haskell allows the answers to be expressed exactly. For example for (4,2), the win probability for A is 6610505 % 10077696 (see the rightmost column here). 



Friday, September 11, 2020

Trying TCR

A fellow at the Recurse Center hosted a workshop on TCR (see Kent Beck's post for an introduction to the idea), using these templates

The short of it is: a watcher will automatically run tests upon file save; if any tests fail, it will revert to the prior commit; else, it will make a new commit. 

Despite some initial mental (and practical workflow) resistance, I've warmed very rapidly to the idea. 

By far the biggest change is the revert part of test && commit || revert. Some initial complaints:

  • I made a typo, and it revert to the last commit
  • I just lost a whole block of code
  • I can't just try this simple thing because it keeps failing a test and getting deleted 
The first one maybe retains some legitimacy, but in general, the idea is: 
  • slow down
  • write fragments that you understand
  • write smaller fragments if necessary 
The process also highlights the fact that tests may evolve with the code; as an interface changes, so too do the tests need to change (or TCR won't let you make the commits!).


A few implementation notes for macOS users, building on the Python example from these templates

This gist contains the edits discussed below.

watch.sh
  • Instead of inotifywait, on macOS fswatch can be installed from Homebrew (brew install fswatch)
  • fswatch should be called with the --one-event flag, since it's already called in an infinite loop (otherwise it blocks the next line)
commit.sh
  • By default, TCR will auto-commit with the same message; as one possible alternative, call AppleScript and ask for a commit message via a prompt
    

test.sh
  • The default example has some assertions in the main Python file; modify this to call a testing framework instead (in my case, py.test)


There's a good video here of doing TCR-style testing in Elm. An interesting aspect they mention is squashing a bunch of TCR-generated commits ("what changed") at a later point into more of an explanatory commit ("why the changes").


P.S. for best results with editors, autosave features should be disabled, and autoreload features should be enabled, e.g. in emacs: 

(global-auto-revert-mode t)
(setq auto-save-default nil)



Friday, August 28, 2020

Sudoku Visualization

The Sudoku solver visualization in Elm is done! 

https://tarokuriyama.com/projects/sudoku.php

Writing Elm feels similar to writing Haskell, with a bit of syntax that's more like F# (e.g. the pipeline operators <| and |>). Between the familiar format of Learn You and Elm and the examples in Beginning Elm, it's relatively easy to pick up given a bit of functional programming background.

All of the code for the solver and visualization is on GitHub.